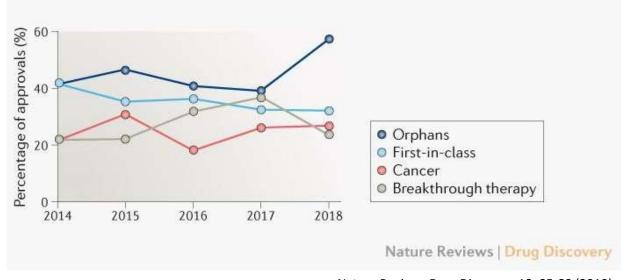


Overview

- 1. Drug discovery challenges and why we use phenotypic assays
- 2. Imaging technologies advancing high-content analysis (HCA) and developments in model assays
- 3. Examples of phenotypic HCA assays.

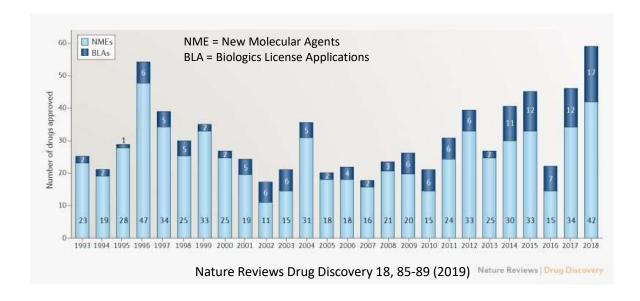


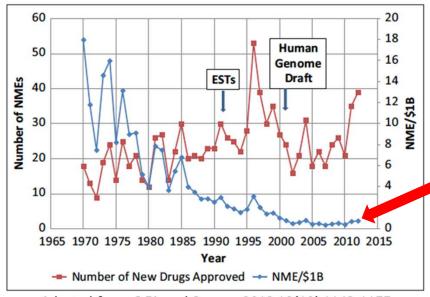
Nature Reviews Drug Discovery 18, 85-89 (2019)

The rising cost of drug discovery

In 2016 a study calculated that it costs \$2.558 billion to produce a new drug (Journal of Health Economics Volume 47, May 2016, Pages 20-33)

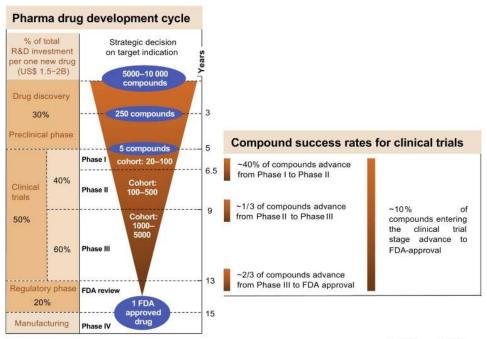
In 2018 a retrospective study of clinical trials between 2000-2015 of 21,143 compounds revealed that the highest three success rates were 32.6% for clinical studies of ophthalmology drug candidates, 25.5% for cardiovascular drug candidates, and 25.2% for infectious disease products. The lowest percentage came from oncology trials, at just 3.4%. (Biostatistics, Volume 20, Issue 2, April 2019, Pages 273–286)





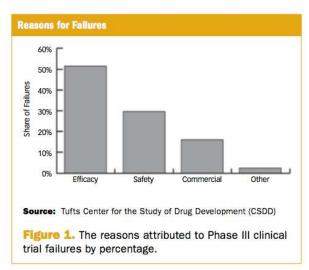
Adapted from: J Biomol Screen. 2013 18(10) 1143-1155

Reasons for clinical trial failure



Trends in Pharmacological Sciences

Volume 40, ISSUE 8, P577-591, August 01, 2019



http://www.appliedclinicaltrialsonline.com/phase-iii-trial-failures-costly-preventable



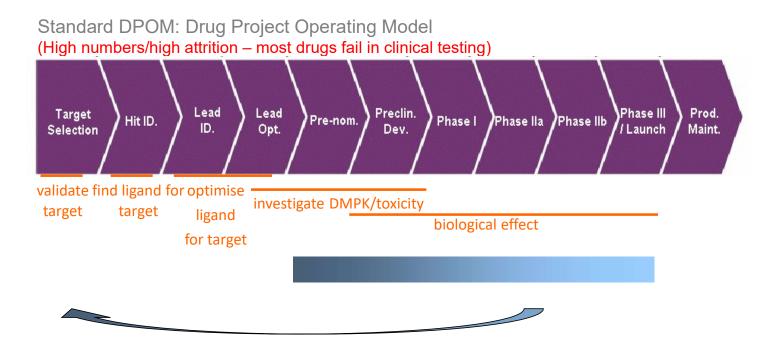
DPOM: Target-directed Drug Discovery (TDD): High Throughput Screening in target based drug discovery



It takes a long time to bring a candidate drug to preclinical testing

Phenotypic Drug screening: (drug discovery in reverse) -just like the old days!

Problem: <u>Current preclinical models of disease do not fully recapitulate clinical disease and therefore do not predict clinical efficacy.</u>



Answer: We need earlier testing of compounds in biologically relevant assays.

This can be achieved by frontloading the biology by screening for candidate compounds using a phenotypic approach.

What is a phenotype?

"a set of observable characteristics of an individual resulting from the interaction of its genotype with the environment."

Why use phenotypes?

- Target agnostic; in contrast to target-based discovery.
 - Useful for when diseases are poorly understood (no targets), are very heterogeneous (too many targets!) or targets are hard/complicated to drug.
- Phenotypic screening has been successfully used for a long time and it can be better at finding "first-in-class" drugs (i.e. novel targets).
- Phenotypic screening is compatible with complicated, disease recapitulating models.
- Phenotypic screening can also work in tandem (and does in some companies) with current models of drug discovery.

Historical Drug Discovery Strategies: Serendipitous Phenotypic Drug Discovery

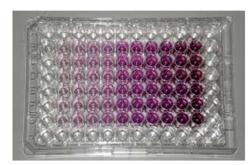
(screening natural or synthetic chemical libraries in physiological based assays)

Animal models

Lianne and Bill Russell - Oak Ridge National Labs

Eggs

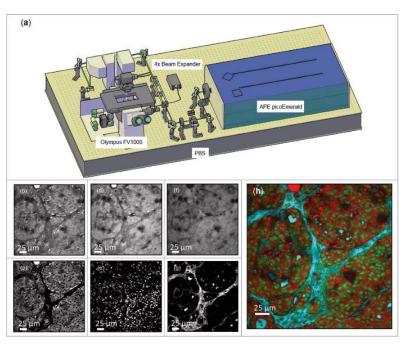
Cell Viability



https://www.ornl.gov/news/mammalian-genetics-pioneer-liane-russell-writes-mouse-house-history

Why Use Phenotypes? – Biology is complicated

In vivo imaging of squamous cell carcinoma cells (green), collagen (blue) and red blood cells (red).

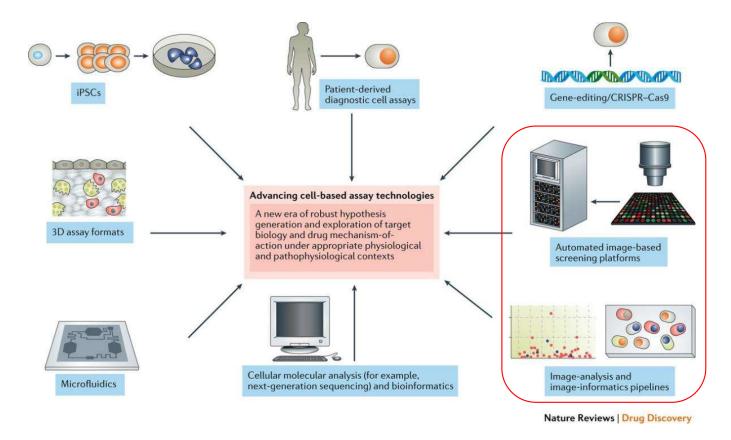


Multimodal imaging of cancer in vivo.

Lee et al., IntraVital Volume 4, 2015 - Issue 1

Are our disease models good enough?

- Recent advances in patient-derived primary cell models

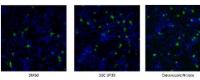


Horvath, P., Aulner, N., Bickle, M. et al. Screening out irrelevant cell-based models of disease. Nat Rev Drug Discov 15, 751–769 (2016) doi:10.1038/nrd.2016.175

Why Use Phenotypes? – Biology is complicated

Neurological

Screening for compounds promoting Oligodendrocyte differentiation using hiPSC cultures

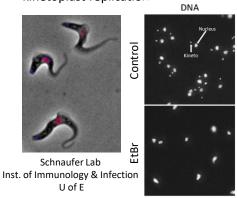


Dario Magnani/ Siddharthan Chandran MRC Centre for Regen. Med. U of E

Outputs: O4+/MBP+ OLs, OL morphology

Infectious Disease

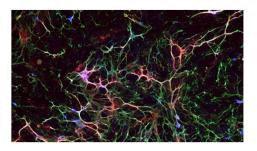
Inhibiting *Trypanosoma brucei* kinetoplast replication



Outputs: Tryp viability, cell cycle stage and kinetoplast number

Respiratory

Fibrosis ECM deposition assay (Collaboration with UCB Pharma)



Outputs: cell viability, fibronectin, collagen I, III and IV

Cellular Processes

SQSTM1/DAPI

Control +ve

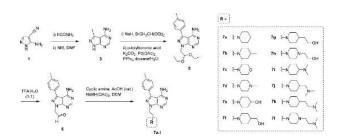
Andrea Martello Centre for Cardiovascular Science U of E **Outputs**: Cell counts, autophagy puncta and localisation

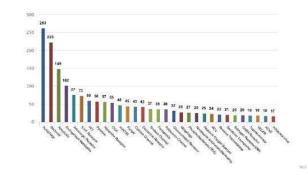
Oncology +Vorinostat Control 5 mg/kg panobinostat 75 mg/kg VS-4718 75 mg/kg VS-4718 Combination F-actin, HCS Cell Mask, Nuclei

Outputs: Cell number, cell cycle and morphology

Edinburgh Cancer Discovery Unit Collaborations

What can be screened?



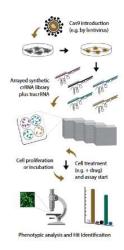


Small targeted chemical libraries (10s of compounds)

- Target can be known but not required for phenotypic screening.
- Can use very complicated phenotypes requiring difficult biological conditions
- Low throughput
- Very focused chemistry

Annotated compound libraries (10-1000s)

For example established compounds for repurposing or focused chemical probes sets



5)

- <u>Large diverse chemical libraries (1000s, 10k+ compounds)</u>
- Target can be known but not required for phenotypic screening.
- Harder to use very complicated biological conditions
- High-throughput
- Diverse chemistry

Genetic screens; CRISPR or RNAi (up to whole genome screens)

- No chemistry!
- Can search for novel targets
- Knockouts or knockdowns of genes is not equivalent to chemical inhibition.
- · Can be difficult to introduce vectors into cells.

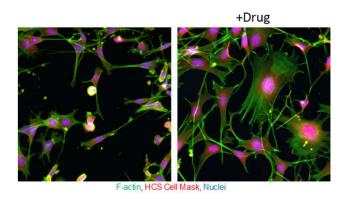
What do we mean by <u>high-content</u> phenotypic screening?

High-throughput screening

 Designed to assay thousands-millions of compounds rapidly in a (simple) <u>single</u> endpoint assay, e.g. inhibition of a target enzyme.

High-content screening

• Captures <u>multiple features</u> (high-content) per sample to quantify phenotypes.



Advances in technology enables -Edinburgh Phenomics Drug Discovery Capabilities

(12k)120,000 FDA (1,280) Annotated (>200) **Sub-libraries** (kinase/protease/Epig enetic/industry

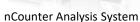
Edinburgh Cancer Discovery Unit

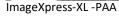
RPPA, Cytokine Arrays and NanoString (antibody-based protein array and gene expression analysis)

RPPA and Cytokine arrays

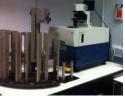
BioMek FX/NX

Nanoplotter 2.1E





High-content Image Acquisition and Analysis

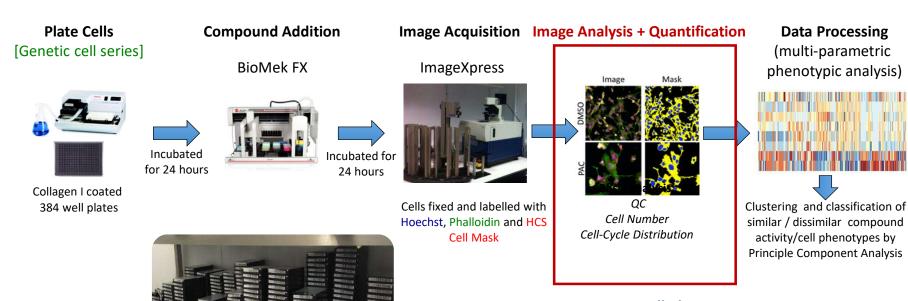


IncucyteZoom

ImageXpress confocal

IGMM Image Database & Local Compute Cluster: 1800 cores

High-Content Screening Workflow



180 x **384** Well Plates:

16,896 Wells (1,216,512 images) – <u>large image sets (Tb's!)</u>

1,408 DMSO Wells

704 STS Wells

704 PAC Wells

144 Untreated Wells

Cell QC

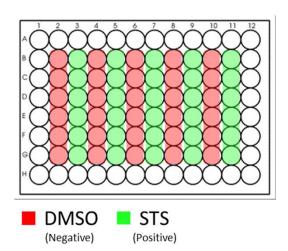
- Healthy cells free of mycoplasma
- Cells need to look and be growing normally
- Try to screen within a set number of passages

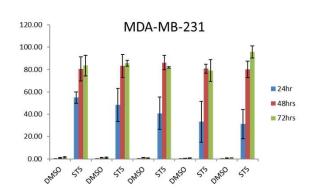
Image QC

- Identify any images that are out of focus or contain debris
- During acquisition correct for uneven illumination (can be done on the images as well)

Assay QC

Assay robustness is measured with positive and negative controls.





Z-Factor	24Hrs	48Hrs	72Hrs
MDA-MB-231	0.14	0.72	0.694253
HCC1569	-0.57	0.35	0.774934

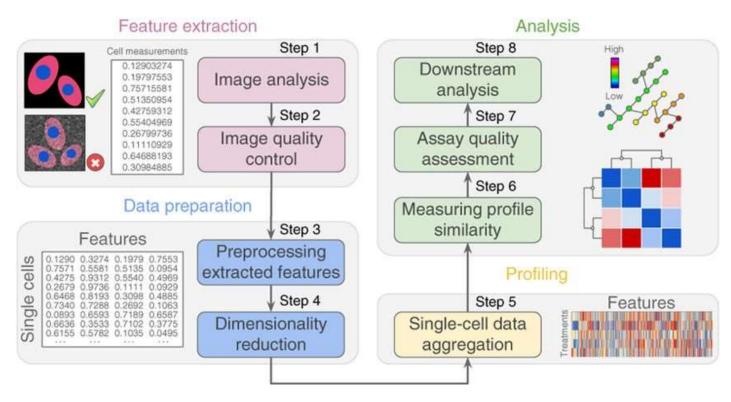
Note that if $\sigma p = \sigma n$, 0.5 is equivalent to a separation of 12 standard deviations between μp and μn

Z'-factor 1.0 between 0.5 and 1.0 between 0 and 0.5 less than 0

Interpretation

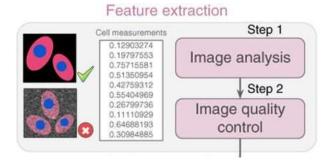
Ideal. Z-factors can never exceed 1.
An excellent assay.
A marginal assay.
There is too much overlap between the positive and negative controls for the assay to be useful.

Typical Analysis Work Flow – Data Analysis

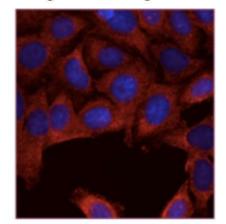


Nature Methods volume 14, pages 849-863 (2017)

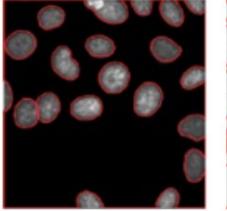
Describing the Phenotype – Image Analysis

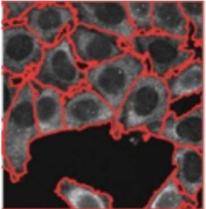


Original image:



Processed images:

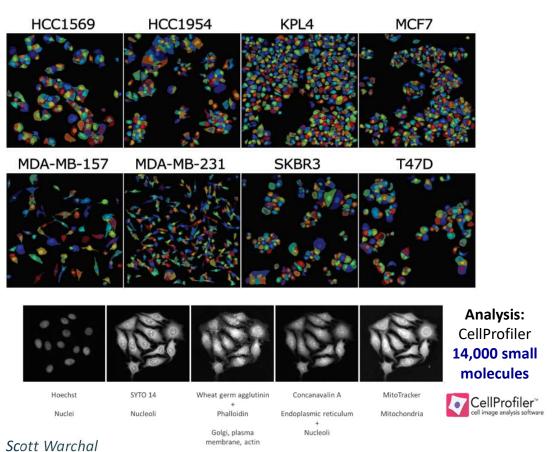




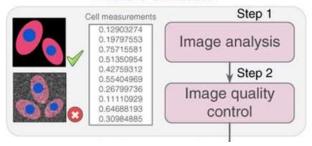
https://clue.io/connectopedia/cell_painting_features

Describing the Phenotype – Image Analysis

CellPainting - Unbiased phenotypic profiling



Feature extraction



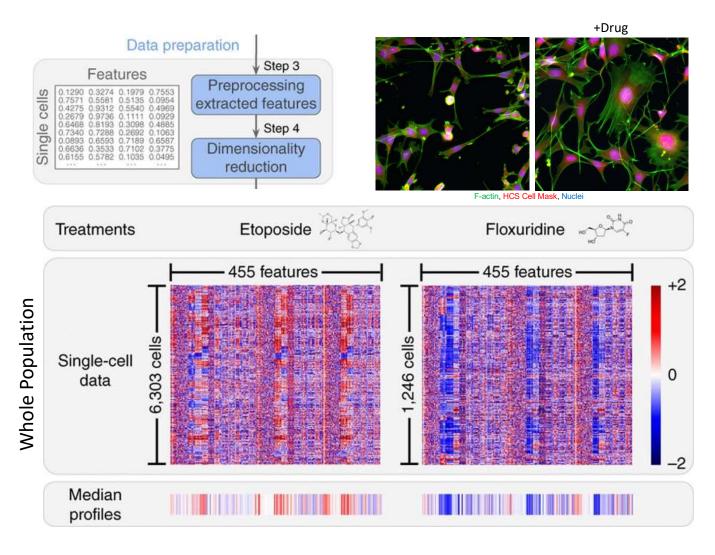
Multiparametric phenotypic profiling

Channel	n	Compartment	n
DNA	355	Cells	596
AGP	387	Cytoplasm	582
ER	387	Nuclei	605
Mito	387	1100.01	000
RNA	387		

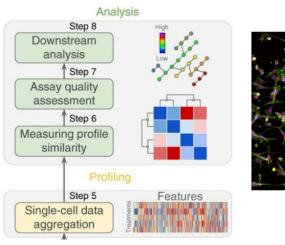
FeatureGroup	n
AreaShape	144
Correlation	300
Granularity	208
Intensity	225
Location	66
Neighbors	21
RadialDistribution	180
Texture	630

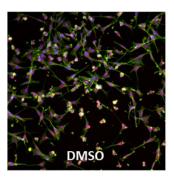
https://clue.io/connectopedia/cell_painting_features

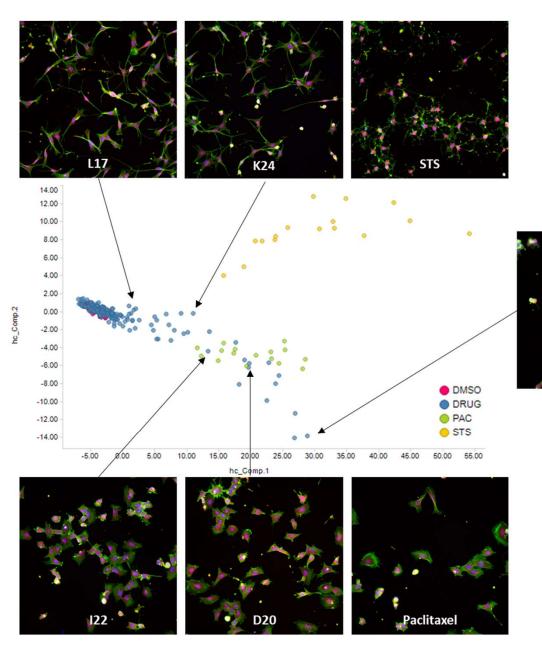
Describing the Phenotype – Data Processing

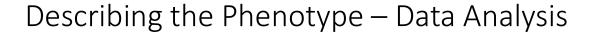


Describing the Phenotype – Data Profiling and Analysis

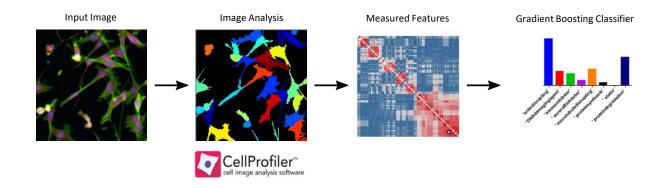




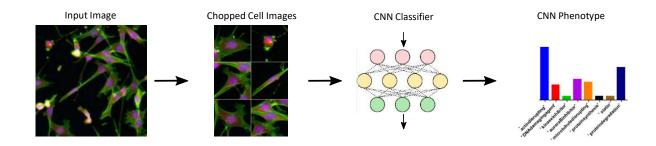




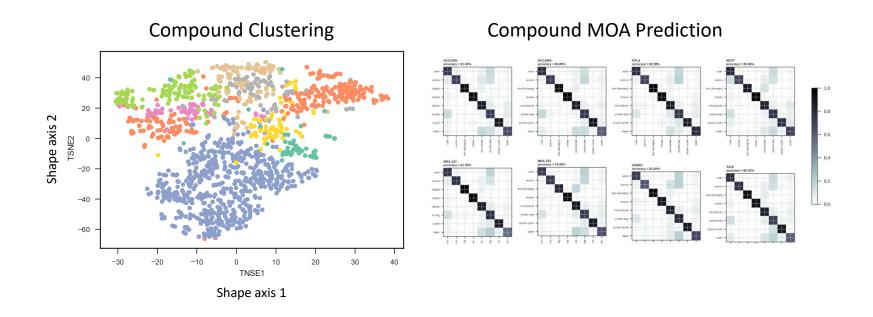
*i Image analysis algorithm segmentation and feature extraction; ensemble based tree classifier*User defined set of features to describe a phenotype.



ii AI: Deep learning on raw image (300x 300 pixels) data; convolution neural network classifier (cNN) AI learns features that describe phenotype.

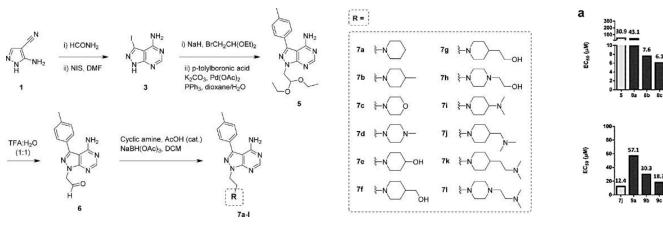


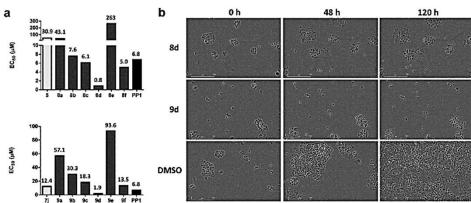
Describing the Phenotype – Data Analysis

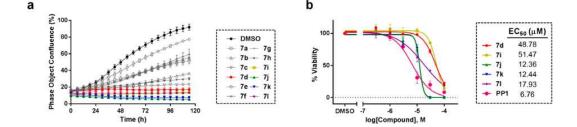


Take novel compounds and compare their fingerprints to those of known drugs

1. Screening of small targeted-compound libraries – Src kinase inhibitors in breast cancer







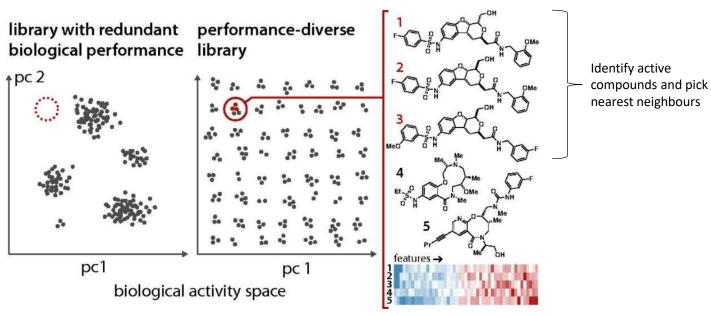
Simple phenotypic readouts to progress active compounds

- Kinetic growth (confluence)
- Cell Viability

Fraser et al., J. Med. Chem. 2016, 59, 4697-4710.

NIVERSEN OF DINBURE

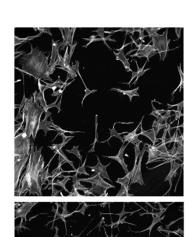
1. Using chemical diversity libraries to identify novel inhibitor starting points.



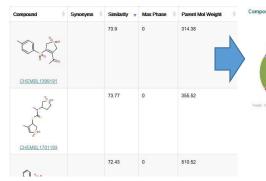
PNAS July 29, 2014 111 (30) 10911-10916

Chemical diversity libraries covers a wider range of chemistry and, potentially, more biology

1. Chemical diversity library screening: Chemi-informatics







Predict targets

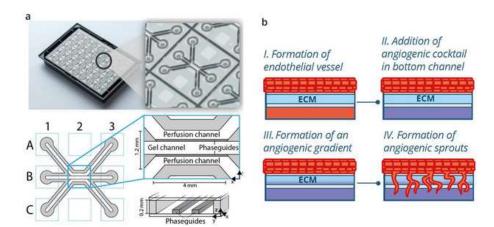
(4)

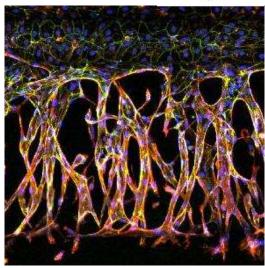
Query	Target Key	Target Name	Description	P-Value	MaxT
	QE33MI_RAT	MET	Transporter	1 844n-23	1.00
	GCGA4_HUMAN	SLCGA4	Sodium dependent serotorin transporter	2.146e 17	1.00
	SHTEC RAT	HINDS	5-hydroxytryptamine receptor 2C	2.220-16	1.00
100	HCEAL RAT	Relat	Sodium-dependent serotonin transporter	7 772e-16	1 00
1	SCONZ HUMAN	SLORA	Sodium dependent noradrenatine transporter	9.992e 10	1.00
	SC6A2_MOUSE	50642	Sodium-dependent noradrenaline transportor	9.215e-15	1.00
	SCHAS_MOUSE	Sesas	Sodium-dependent dopamine transporter	1 133e-09	1.00
	CACIC_HUMAN	CACNATE	Voltage dependent L type calcium channel subunit alpha 1C	3.025e 09	1.60
fluoxetine	CAC1C_RAT	Cacnato	Voltage-dependent L-type calcium channel subunit alpha-1C	6.1320-06	1.00
	HCGAS_RAT	Scial	Sodium-dependent dopamine transporter	3.268e-06	1.00
	Q9WTB4_BAT	9x0a2	Transporter	0.0006893	1.00
	HRRS_HUMAN	HRH3	Histamine H3 receptor	0.001212	1.00
	CPSTSE_HUMAN	EV919096	Cytochrome P450 2D6	0.00157	3.00
	KCNIR_HUMAN	KCN12	Potassium voltage gated channel subfamily II member 2	0.02309	1.00
	ADAZE HUMAN	ADRAZE	Appa-28 acreparar receptor	0.02379	1.00

Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK. Relating protein pharmacology by ligand chemistry. Nat Biotech 25 (2), 197-206 (2007).

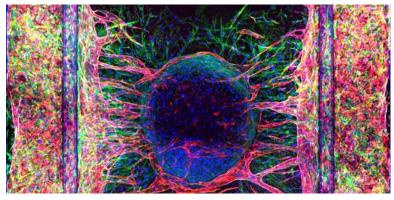
*other chemical similarity tools are available

5. Miniaturised Complex 3D Assay Formats





Angiogenesis

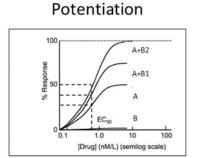


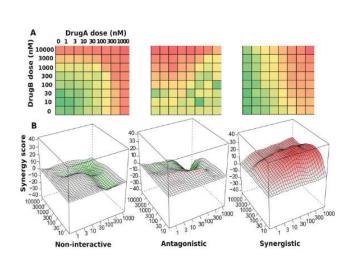
Vascularized tumour spheroids

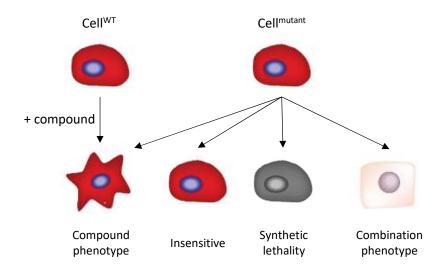
6. Combination drug screening

Chemical-chemical screening strategy

Chemical-genetic screening strategy

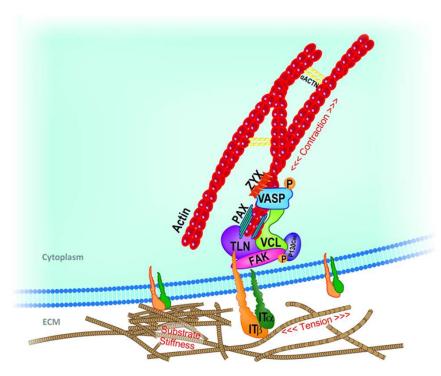






Multiple combinations becomes technically challenging especially with large dose matrix setups.

Focal Adhesion Kinase (FAK)



SCC FAK-Wild type

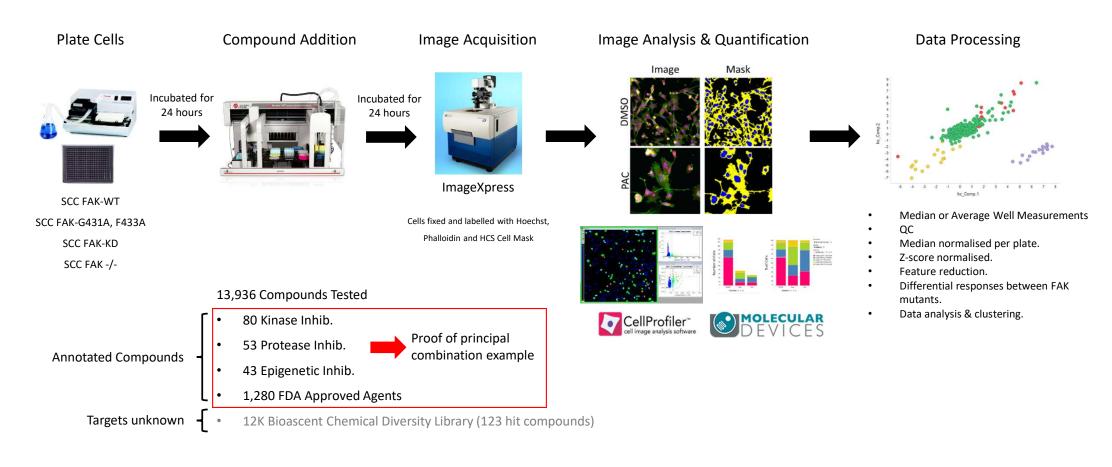
SCC FAK-G431A, F433A (CDC37 chaperone mutant)

SCC FAK-Kinase dead

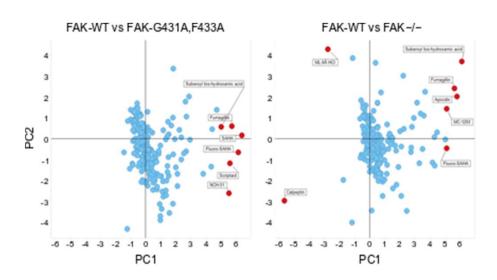
SCC FAK-deleted

FAK Combination Phenotypic Screen Summary

Aim – To identify compounds that synergise with a FAK kinase inhibitor using a genetic kinase dead.

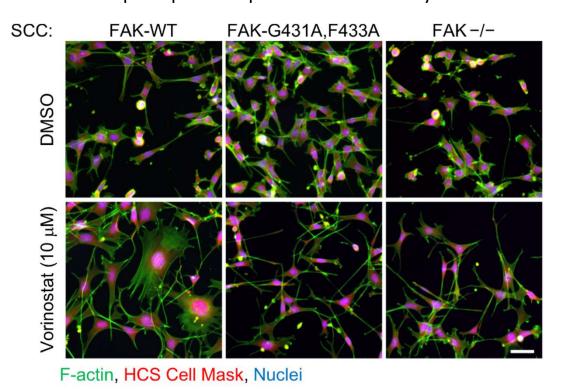


Protease, Kinase and Epigenetic (PKE) annotated tool compound library (176 in total).



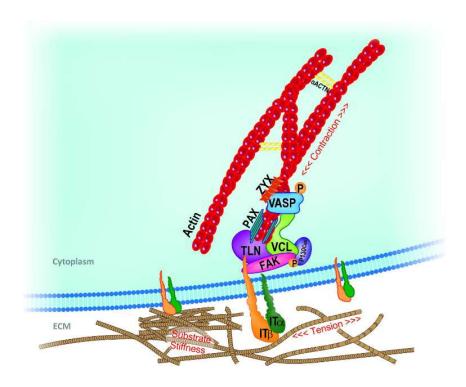
Chemical Name	Hit Score	Target	Cell Line
Suberoyl bis-hydroxamic acid	3.5	HDAC	-/-
Calpeptin	3.5	Calpain; Cathepsin L	-/-
SAHA	2.8	HDAC	G431A
Fumagillin	2.8	Met AP2	-/-
Apicidin	2.7	HDAC	-/-
ML-9A-HCI	2.7	MLCK	-/-
Fluoro-SAHA	2.7	HDAC	G431A
NCH-51	2.6	HDAC	G431A
Fumagillin	2.4	Met AP2	G431A
Scriptaid	2.4	HDAC	G431A
MC-1293	2.2	HDAC	-/-
Fluoro-SAHA	2.0	HDAC	-/-
Suberovl bis-hydroxamic acid	2.0	HDAC	G431A

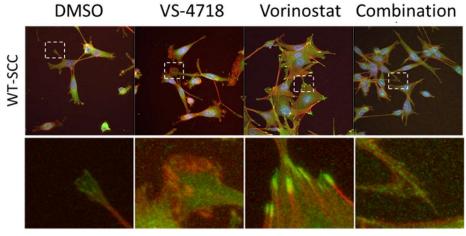
Proof of principle example – Histone deacetylase inhibitors



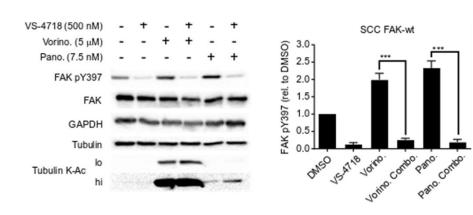
SCC model – HDAC combination with the FAK kinase

inhibitor VS4718





Nuclei/FAK pY397/F-Actin



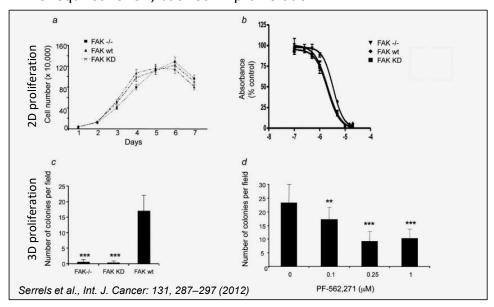
SCC-FAK model

Vorinostat and panobinostat were selected to take forward for subsequent validation with a FAK kinase inhibitor (VS-4718).

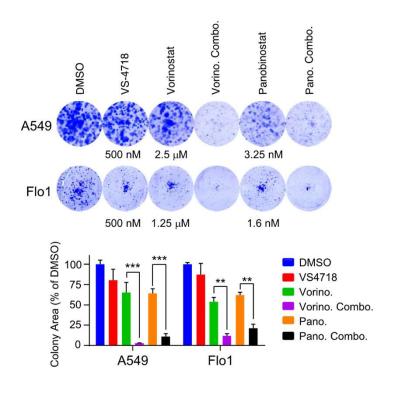
Combination does not synergistically inhibit 2D proliferation of SCC cells.

2D phenotype 500 nM VS-4718 DMSO 7.5 nM Pano WT-FAK SCC FUCCI C Conflunce (rel. to 0h) - Vorino. (10 μM) 10 µM Vorino. VS-4718 (500 nM) Vorino, Combo. Pano. Combo. 40 60 Time (hr) WT-SCC 24 Hours

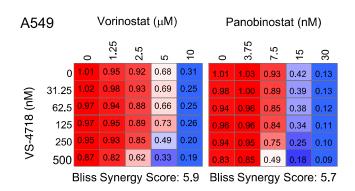
FAK is required for 3D, but not 2D proliferation

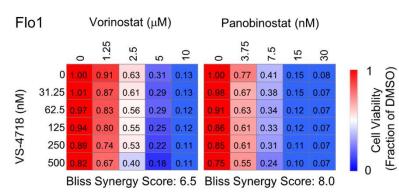


Combination of HDAC and FAK inhibitors blocks growth of A549 and Flo1 cell lines

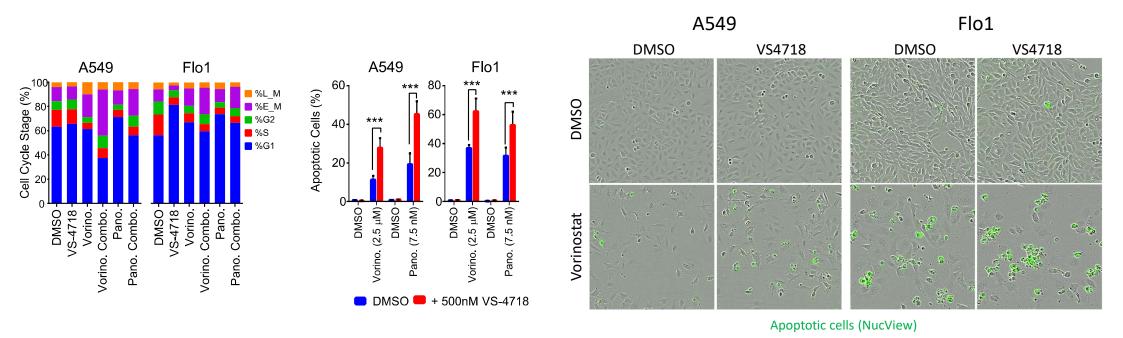


A549 cells are a lung adenocarcinoma
Flo1 cells are a oesophageal adenocarcinoma





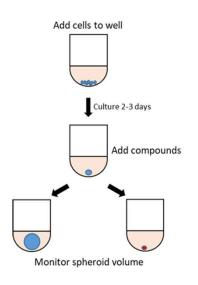
Combination of HDAC and FAK inhibitors induce cell cycle arrest and apoptosis.

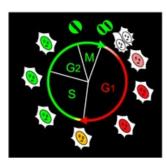


Phenotypic assays - 3D Spheroid Cultures

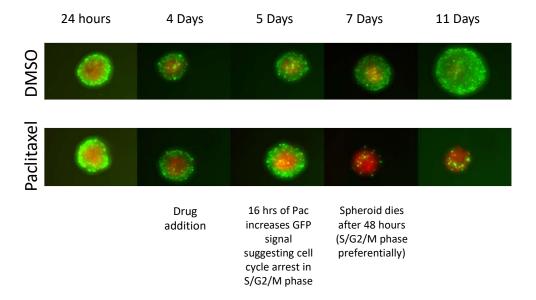
SCC cells expressing FUCCI (Fluorescent Ubiquitination-based Cell Cycle Indicator)

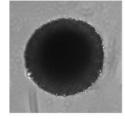
3D spheroid cell culture

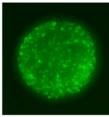


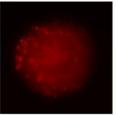


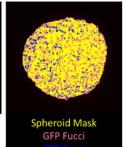
FUCCI Cell Cycle

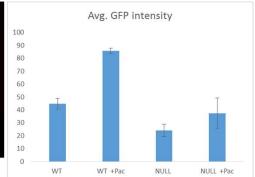




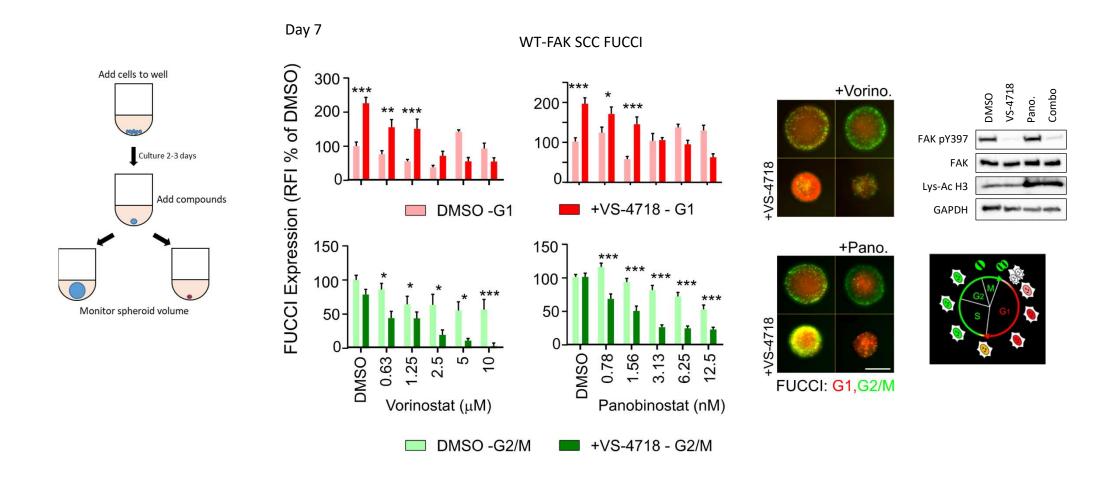




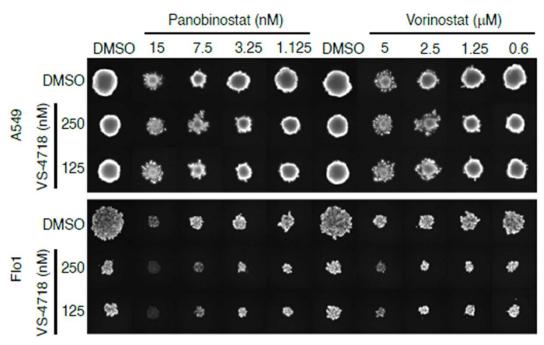




Combination of HDAC and FAK inhibitors blocks growth of SCC cells in a 3D spheroid model of growth.

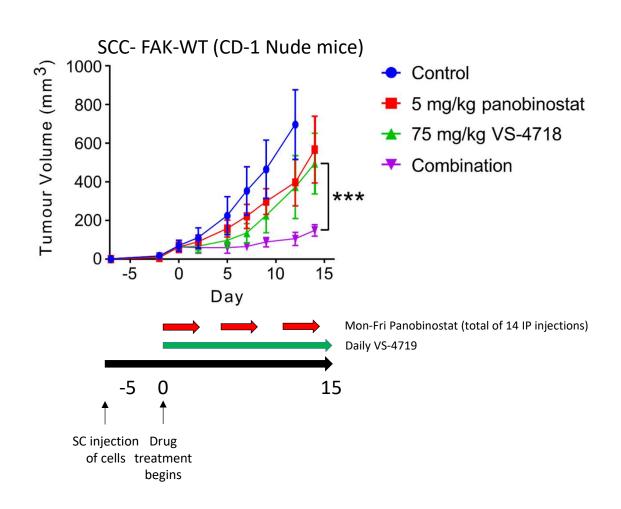


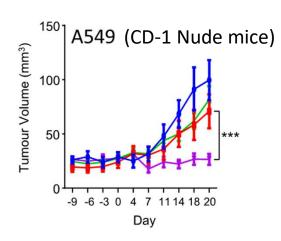
Combination of HDAC and FAK inhibitors blocks growth of A549 and Flo1 cells in a 3D spheroid model of growth.

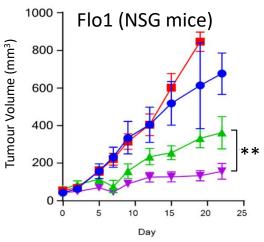


Spheroids labelled with Calcein AM viability dye on day 7

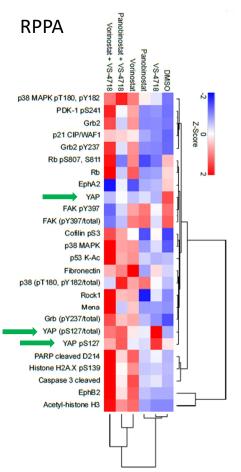
Combination of HDAC and FAK inhibitors blocks growth of tumours.



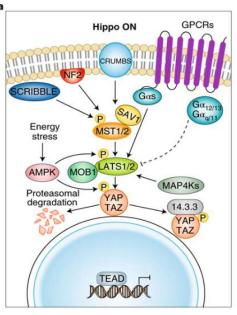


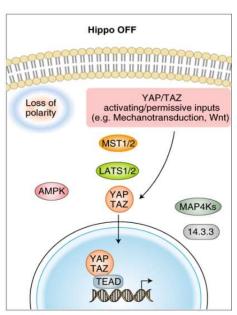


A FAK and HDAC inhibitor combination targets YAP signalling



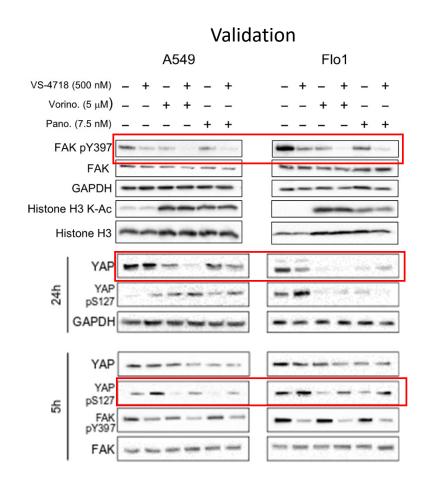
Hippo signalling

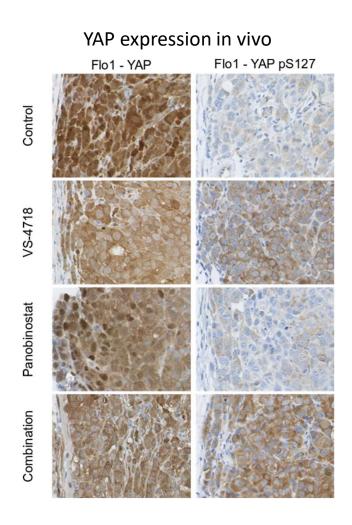




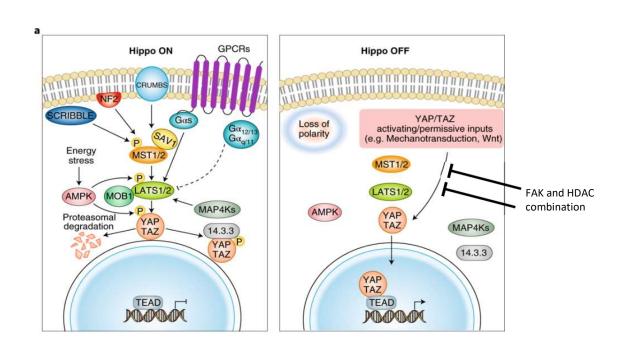
Profiled 120 antibodies covering a range of signalling pathways

Combination of HDAC and FAK inhibitors abolishes FAK activity, and cooperatively inhibits YAP nuclear translocation and expression





A FAK and HDAC inhibitor combination targets YAP signalling



Molecular Cancer Therapeutics

A Synergistic Anti-Cancer FAK and HDAC Inhibitor Combination Discovered by a Novel Chemical-Genetic High-Content Phenotypic Screen

DOI: 10.1158/1535-7163.MCT-19-0330

Conclusions

1. Drug discovery challenges and why we use phenotypic assays

2. Imaging technologies and developments in model assays

3. Examples of phenotypic high-content analysis (HCA) assays

Collaborators

Cancer Research UK Edinburgh Centre

Margaret Frame

Neil Carragher

Val Brunton

Asier Unciti-Broceta

Morwenna Muir

John Marwick (Fibrosis model with UCB)

Richard Elliott (Oesophageal screen)

Becka Hughes (Oesophageal screen & CellPainting)

Scott Warchal (CellPainting)

Alison Munro (Nanostring)

Kenneth Macleod (RPPA \$ cytokine arrays)

Ashraff Makda (Liquid handing and automation)

Leolie Telford-Cooke (iPSC oligodendrocyte model)

Other Collaborators

Daniel Lietha (FAK structural advice)

Siddharthan Chandran (IPSG oligodendrocyte model)

Dario Magnani (iPSC oligodendrocyte model)

Migla Miskinyte Reis (Trypanosome kinetoplast assay)

Tamara Sirey (miRNA mimetics mitochondrial function)

Claire Smillie (miRNA mimetics mitochondrial function)

Andrea Caporali (Autophagy screen)