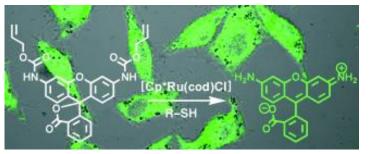


INNOVATING IN CANCER THERAPY

TALK FOR THERACATS

Prof Asier Unciti-Broceta FRSC
Innovative Therapeutics' Lab
Cancer Research LIK Ediphurch Centre

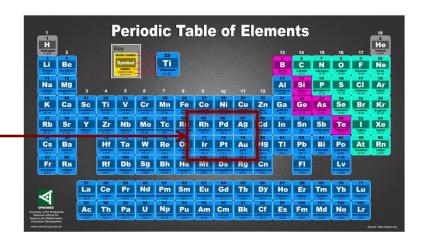

Cancer Research UK Edinburgh Centre Institute of Genetics and Molecular Medicine

University of Edinburgh

Non-natural metal catalysis in cells

Streu & Meggers, Angew. Chemie 2006, 45, 5645

Antecedents: Meggers developed a water-soluble ruthenium complex that rapidly entered cells and performed an allylcarbamate cleavage, while proving to be non-toxic to cells during the short duration of the experiment (minutes).

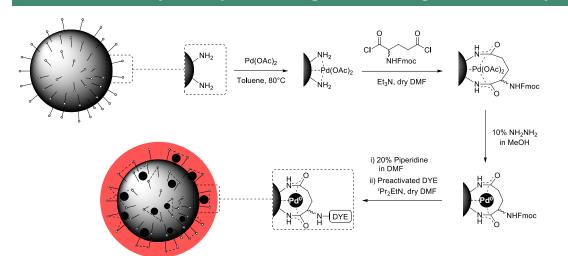

CHALLENGE: Reactions mediated by non-biological transition metals in living systems. **REQUIREMENT:** Elimination / control of the inherent toxicity of the metal.

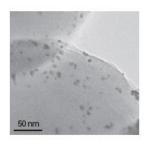
Toxicity & Mechanism:

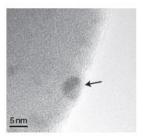
Metals from the platinum group trigger cell death by cross-linking of DNA >> HIGHLY TOXIC

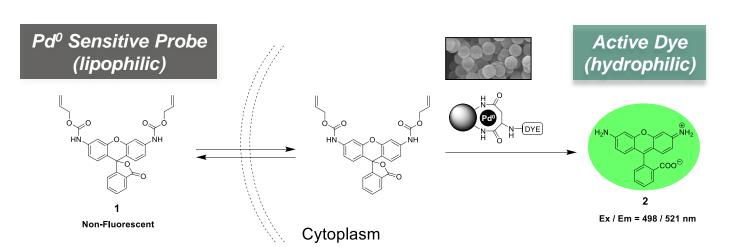
Hypothesis:

Restriction of the catalyst 's freedom to enter cell nuclei will suppress its toxicity mechanism >> HETEROGENEOUS CATALYST



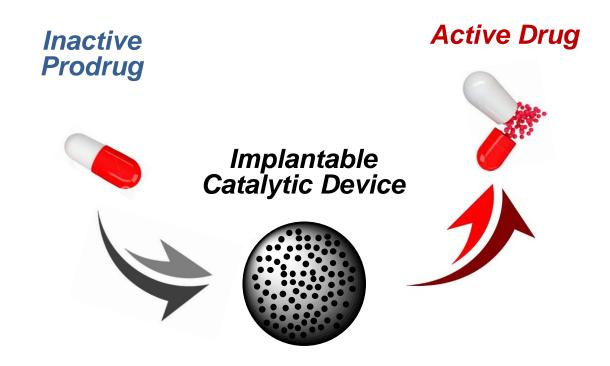



Palladium chemistry in cells


A "bio-friendly" cell-penetrating Pd⁰ heterogeneous catalyst

Biocompatible microspheres that penetrate cells and stay in the cytoplasm >> exonuclear location >> minimal toxicity

Alloc deprotection & Suzuki coupling inside cells


SAFE ON THEIR OWN,

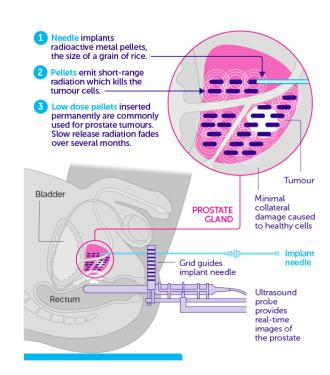
CYTOTOXIC TOGETHER

Implants that make drugs inside your body

GLOCAL Therapy is completely benign until the Prodrug meets the Catalytic Device

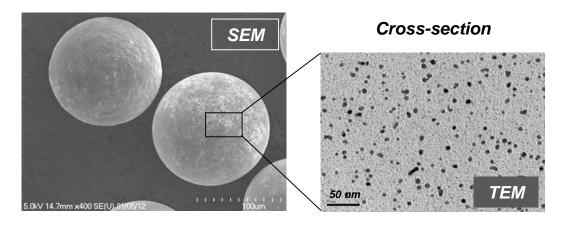
- → Global (systemic) dosing of orally-available Inactive Prodrug >>> ORAL ADMINISTRATION
- → Prodrug stable to pH, redox potential and enzymatic metabolism >>> NO SIDE EFFECTS
- → Activation only where the catalyst is: Prodrug into Drug >>> LOCAL TREATMENT

Clinical benefits

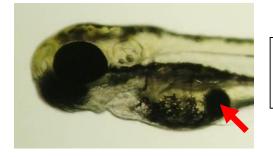


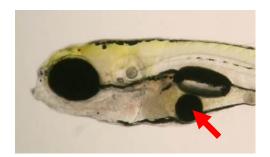
As a catalyst,
Palladium can do the
job of activating one
or more drugs as
many times as
required, overcoming
the useful life and
versatility limitations of
other local therapy
modalities

vs BRACHYTHERAPY


Importantly, Pd-devices are not radioactive! Straightforward low-risk implantation procedure for clinicians

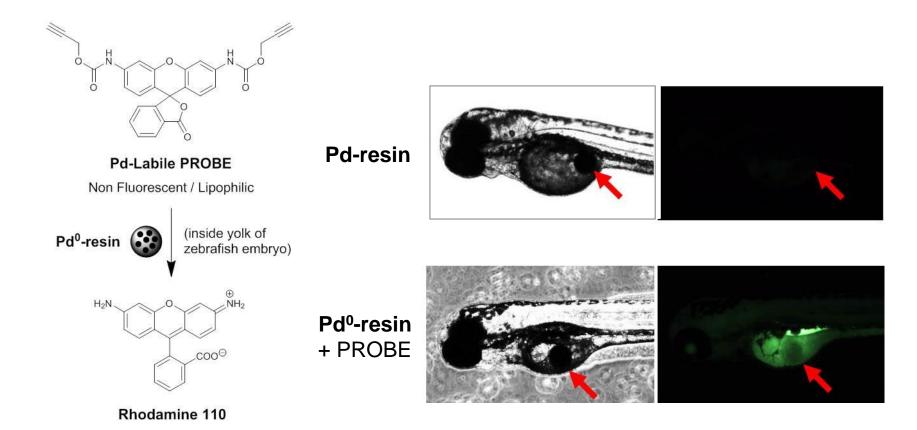

Development of safe Pd-devices


TENTAGEL Resin: solid support used in conventional solid-phase organic synthesis


- Zebrafish embryos (yolk or top of the head) are pierced and a Pd-resin carefully introduced (1 bead / embryo)
- Embryo development is monitored for 4 days
- Zebrafish embryos containing a Pd-resin (indicated with a red arrow) develop normally into their larval stage with no signs of toxicity or alteration of their morphology and behaviour

24 hpf

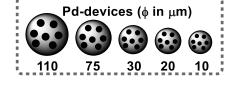
3 dpf

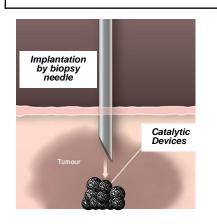


4 dpf

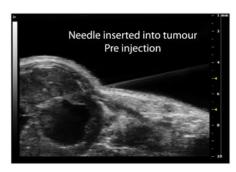
In vivo LOCAL Activation of PROBE

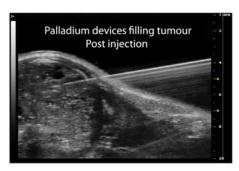
Strong fluorescent signal was clearly observed from the area surrounding the Pd⁰-resin in the yolk sac, confirming that the palladium-functionalized device is catalytically active in vivo

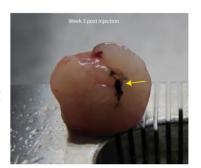

Fluorescent / Hydrophilic



Platform Technology

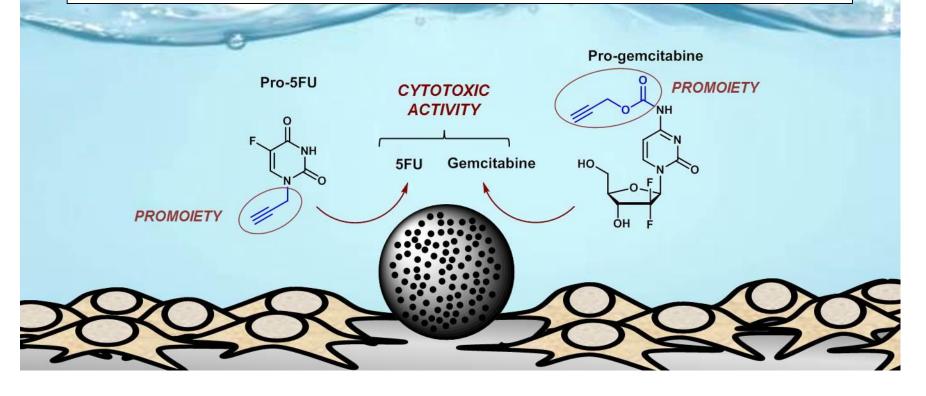



Catalyst			Pd-devices (
Palladium	Safe* *Classified as Biocompatible metals	16w in mice 84d in rats	
Gold			110 75 30


Chemotherapy	Main Cancer Indication	
5FU	Colorectal, Breast, Pancreatic, Oesophageal, Vaginal, Cervical, Anal	
Irinotecan	Colorectal, Lung, Pancreatic, Head & Neck	
Doxorubicin Breast, Pancreatic, GI, Bladder, kidney, Bone, Colorectal		

Devices are echogenic >> intratumoural insertion guided by ultrasound imaging

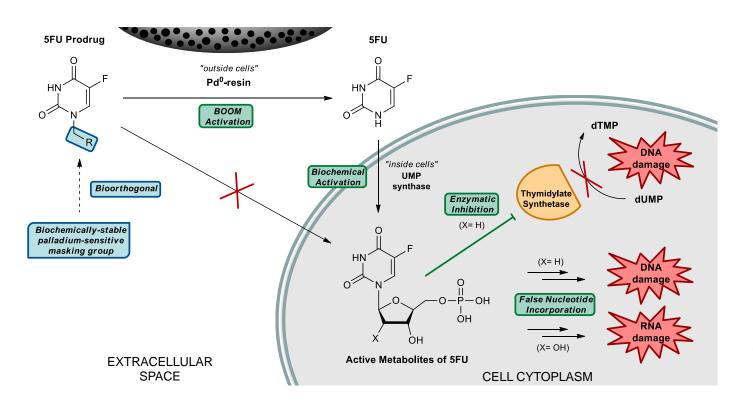
Devices do not "move" from the point of injection


How to make a bioorthogonal prodrug

OBJECTIVE: Control the activation of prodrugs **exclusively** by implant-localized palladium catalysis

The highly specific design of such prodrugs need to be addressed to achieve 3 goals:

- (i) Eliminating drugs' biological properties (>100-fold);
- (ii) Minimizing their susceptibility to metabolic cleavage; and
- (iii) Rendering them "cleavable" by Pd in conditions compatible with life

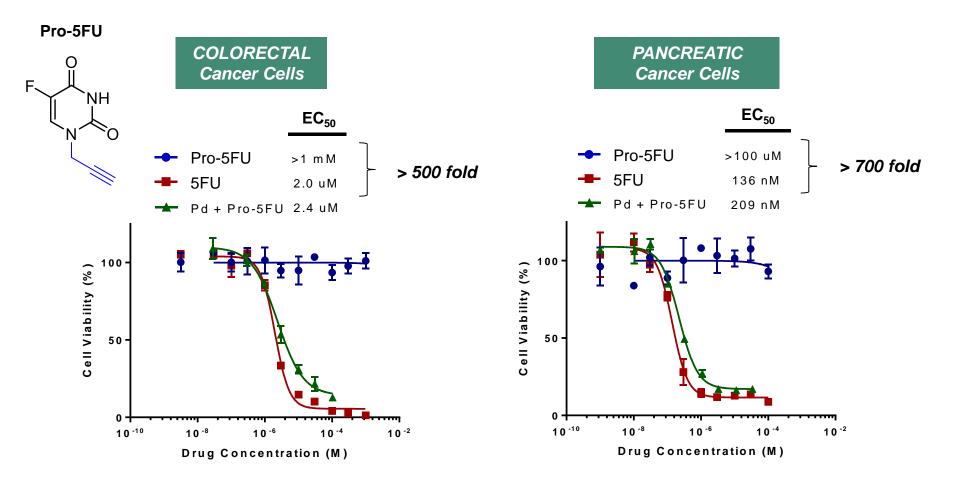


5FU Prodrug Design

GOAL: To increase prodrug stability using masking groups that are not recognized by hydrolytic enzymes while being labile to Pd chemistry

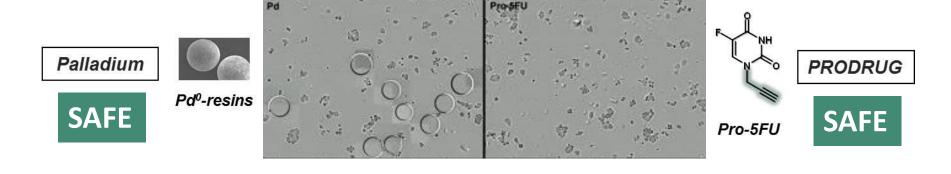
DRUG's Mode of Action:

5FU is converted intracellularly into cytotoxic nucleotidic metabolites, which inhibit directly thymidylate synthase or incorporates into RNA and DNA to disrupt normal cell functions


CHALLENGE: According to the literature, palladium-mediated N-dealkylations in water typically require temperatures incompatible with cell survival (>80 $^{\circ}$ C) **KEY:** lactam – lactim tautomery

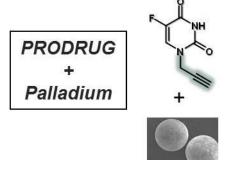
Prodrug Safety and Activation

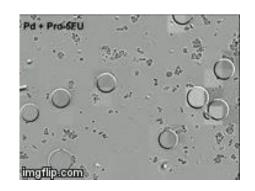
Alkylation of the N1 position of 5FU (cytotoxic drug used to treat colorectal and pancreatic cancer) resulted in biochemically-stable inactive derivatives (reduction of cytotoxicity >500 fold).



Visualizing inactive prodrug and devices

Chemical masking of **5FU** (drug used to treat colon and pancreatic cancer) results in a completely inactive derivative (reduction of cytotoxicity >500 fold).


Real-time visualization (5 days) of cell proliferation (colorectal cancer cells)



Visualizing prodrug activation

Combination of inactive **Pro-5FU** and **Pd-devices** mediated strong cytotoxic activity, equivalent to that of **5FU**, demonstrating the in situ manufactured of the drug

CYTOTOXIC

Real-time visualization (5 days) of cell proliferation (colorectal cancer cells)

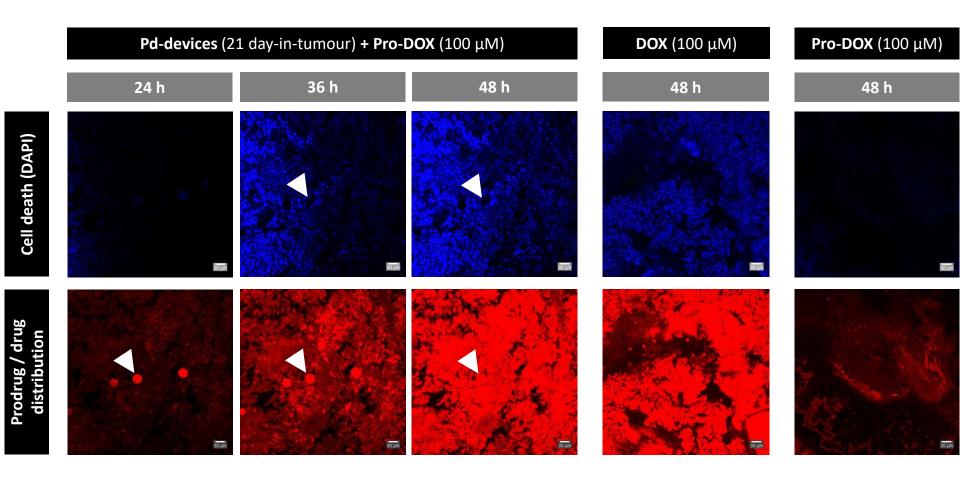
Palladium activated prodrugs

Nat. Commun. 2014, 5, 3277

J. Med. Chem. 2014, 57, 5395

Sci. Rep. 2015, 5, 9329

J. Med. Chem. 2016, 59, 9974


Angew. Chemie **2017**, *56*, 12548 Chem. Sci. **2018**, *9*, 7354-7361

Chem. Eur. J. 2018, 24, 16783-16790

Ex vivo activation of chemotherapy

Ex vivo Pd-mediated release of DOX from an inactive precursors in a prostate tumour explant

Palladium activated prodrugs

Nat. Commun. 2014, 5, 3277

J. Med. Chem. 2014, 57, 5395

$$\begin{array}{c|c}
F & R \\
N & O \\
O & N \\
O & N \\
\hline
N & O \\
\hline
R = 32
\end{array}$$

$$\begin{array}{c|c}
R = 32
\end{array}$$

$$\begin{array}{c|c}
R = 32
\end{array}$$

$$\begin{array}{c|c}
R = 32
\end{array}$$

Sci. Rep. 2015, 5, 9329

J. Med. Chem. 2016, 59, 9974

Angew. Chemie **2017**, *56*, 12548 Chem. Sci. **2018**, *9*, 7354-7361

Chem. Eur. J. 2018, 24, 16783-16790

Innovative Therapeutics Lab

PLEASE DO NOT
FORGET TO
REGISTER
BEFORE FRIDAY
TO TAKE
ADVANTAGE OF
THE EARLY BIRD
REGISTRATION!!!

25-03-2019 THERACAT

Zaragoza, Spain, 16-18 October

25-03-2019 THERACAT

ACKNOWLEDGEMENTS

COLLABORATORS

FROM THE IGMM SITE

Neil Carragher – Phenotypic 2D/3D Assays Liz Patton – Zebrafish Models Val Brunton & Margaret Frame – Mouse cancer models & cell biology

Dirk Sieger & Catherina Becker – Zebrafish models & assays Steven Pollard & Paul Brennan – Glioblastoma cells Scott Webster – PK studies Douglas Houston – In silico studies

FROM BEATSON INSTITUTE & UNIVERSIDAD DE ZARAGOZA

Hing Leung – Prostate cancer models Jesús Santamaría – Nanotechnology and hybrid bioartificial devices

